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ABSTRACT 

Motivation: Structural characterization of protein interactions is 

necessary for understanding and modulating biological processes. 

On one hand, X-ray crystallography or NMR spectroscopy provide 

atomic resolution structures but the data collection process is typi-

cally long and the success rate is low. On the other hand, computa-

tional methods for modeling assembly structures from individual 

components frequently suffer from high false positive rate, rarely 

resulting in an unique solution.  

Results: Here, we present a combined approach that computation-

ally integrates data from a variety of fast and accessible experimen-

tal techniques for rapid and accurate structure determination of pro-

tein-protein complexes. The integrative method uses atomistic mod-

els of two interacting proteins and one or more datasets from five 

accessible experimental techniques: a SAXS profile, 2D class aver-

age images from negative stain EM, a 3D density map from single 

particle negative stain EM, residue type content of the protein-

protein interface from NMR spectroscopy, and chemical cross-

linking detected by mass spectrometry. The method is tested on a 

docking benchmark consisting of 176 known complex structures and 

simulated experimental data. The near-native model is the top scor-

ing one for up to 61% of benchmark cases depending on the in-

cluded experimental datasets; in comparison to 10% for standard 

computational docking. We also collected SAXS, 2D class average 

images, and 3D density map from negative stain EM to model the 

PCSK9 antigen – J16 Fab antibody complex, followed by validation 

of the model by a subsequently available X-ray crystallographic 

structure.  

Availability: http://salilab.org/idock 

Supplementary information: Supplementary data are available at 

Bioinformatics online 

Contact: dina@salilab.org; sali@salilab.org 

1 INTRODUCTION  

Biologists are identifying components of macromolecular assem-
blies and networks (Krogan, et al., 2006). To understand how these 
assemblies and networks underpin essential biological processes 
and to modulate them for therapeutic purposes, we need to de-
scribe the structures of both natural and engineered protein interac-
tions (Robinson, et al., 2007). Due to the difficulty of determining 
the atomic structures of protein complexes by X-ray crystallogra-
phy and NMR spectroscopy as well as inaccuracy of alternative 
methods, such as protein-protein docking, new techniques are nec-
essary (Alber, et al., 2008). 
One major computational approach to predicting structures of pro-
tein complexes relies on molecular docking of unbound single 
component structures. Even for complexes with two proteins, 
docking problem remains challenging despite recent advances 
(Lensink and Wodak, 2010). The major bottlenecks include deal-
ing with protein flexibility and the absence of an accurate scoring 
function (Ritchie, 2008). Pairwise protein docking methods can be 
divided into three classes based on their configurational sampling 
algorithm (Vajda and Kozakov, 2009): (i) global methods using a 
fast Fourier transform (FFT) (Eisenstein and Katchalski-Katzir, 
2004) or geometric matching (Schneidman-Duhovny, et al., 2005), 
(ii) medium-range methods such as Monte Carlo sampling 
(Fernandez-Recio, et al., 2003; Gray, et al., 2003), and (iii) meth-
ods guided by data, such as complex refinement based on NMR 
restraints, cross-linking, interface prediction, or site-directed muta-
genesis (Dominguez, et al., 2003; Sivasubramanian, et al., 2006). It 
is common to begin docking two proteins with an unbiased global 
search followed by refinement of the best scoring models 
(Mashiach, et al., 2010). 
Characterizing the structures of multi-subunit complexes benefits 
from using varied experimental datasets (Alber, et al., 2007; Alber, 
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et al., 2007; Russel, et al., 2012). In this hybrid or integrative ap-
proach, the datasets are encoded into a scoring function used to 
evaluate candidate models generated by a sampling method. Inte-
grative structure determination typically iterates through the fol-
lowing stages: (i) gathering information, (ii) designing model rep-
resentation and evaluation, (iii) sampling good models, and (iv) 
analyzing models and information. 
Here, we present an integrative approach to pairwise protein dock-
ing. First, data from one or more of five different experiment types 
are translated into the corresponding scoring function terms. These 
data include (i) the pair-distance distribution function of the com-
plex from a small angle X-ray scattering (SAXS) profile, (ii) 2D 
class average images of the complex from negative stain electron 
microscopy micrographs (EM2D), (iii) a 3D density map of the 
complex from single particle negative-stain electron microscopy 
(EM3D), (iv) residue type content at the protein interface from 
NMR spectroscopy (NMR-RTC) (Reese and Dötsch, 2003), and 
(v) chemical cross-linking detected by mass spectrometry 
(CXMS). These five experimental methods were selected due to 
their feasibility and efficiency of data collection: a SAXS profile of 
the complex in solution can be collected in several minutes (Hura, 
et al., 2009); a 3D EM density map can be reconstructed from a 
smaller sample amount than that for SAXS, but data collection 
process is significantly longer (Stahlberg and Walz, 2008); 2D 
class averages can be computed from micrographs more easily and 
rapidly than performing a full 3D reconstruction; the composition 
of interface residues from NMR (Reese and Dötsch, 2003) pro-
vides information about the interaction interface, unlike the SAXS 
and EM data; and cross-linking data (Rappsilber, 2011) provides 
information at intermediate resolution imposing an upper distance 
bound on inter-molecular pairs of residues. Second, complex mod-
els are sampled, relying on efficient global search methods devel-
oped for pairwise protein docking, followed by filtering based on 
fit to the experimental data, conformational refinement, and com-
posite scoring. Third, good-scoring representatives of clusters of 
models are picked as final models.  
To validate this approach, we apply the integrative method in two 
contexts. First, we test the method on a large benchmark for pro-
tein docking (Hwang, et al., 2010) with simulated experimental 
data and known complex structures. This test allows a robust as-
sessment of the value of the individual types of experimental data 
for specific types of proteins. Second, we also collected SAXS, 
EM2D, and EM3D data to model the PCSK9 antigen – J16 Fab 
antibody complex, followed by validation of the model by a subse-
quently available X-ray crystallographic structure. This second test 
highlights the advantages of the integrative method that allows 
computing an accurate model in a timely manner. 

2 METHODS 

2.1 Integrative Docking Method Summary 

Given the atomic structures of two proteins and one or more datasets from 
SAXS, EM2D, EM3D, NMR-RTC, and CXMS we compute the 3D struc-
ture of their complex. The approach involves four major stages (Fig. 1, 
Supplementary Data): 
Stage 1: Global Search. A global search in the space of all possible dock-
ing models is performed using geometry-based molecular docking 
(Duhovny, et al., 2002). The configurational sampling precision is in-
creased significantly compared to the default settings (Table S1: from 

4.5·103 to 212·103 models) to ensure the interface and global shape of the 
complex are sampled with precision commensurate with that of the data.  
Stage 2: Data-guided Filtering. Each available experimental dataset is 
used independently for scoring and filtering of models inconsistent with the 
data. To account for noise in the data, we convert the data into soft re-
straints. For SAXS profile, a model is filtered out if its radius of gyration is 
in significant disagreement with the experimentally derived one 
(Schneidman-Duhovny, et al., 2011). For EM2D class averages, there is no 
filter. For EM3D density map, a model is filtered only if it significantly 
protrudes out of the density map. For NMR-RTC data, a model is filtered 
out if it does not satisfy at least half of the specified residue type frequen-
cies. For the cross-linking data, a model is filtered if it does not satisfy any 
of the cross-links. For each data type, the scores of the remaining models 
are normalized, using the average and standard deviation of their scores 
(SData). This normalization facilitates combining and comparing of scores 
for different data types with different noise levels. The models are clus-
tered, and the cluster representative with the best fit to the data is selected. 
Top scoring 5000 cluster representatives are processed further. This num-
ber of models usually guarantees that near-native models are not excluded 
even in the case of noisy data (Table S1). 
Stage 3: Conformational Refinement. The goal of this stage is to com-
pute an interface energy score. Since rigid docking models may contain 
steric clashes, the side chain conformations as well as relative positions and 
orientations of the model components are refined, and an interface energy 
score (SEnergy) is computed (Andrusier, et al., 2007; Mashiach, et al., 2010).  
Stage 4: Composite Scoring. The final models are scored and ranked by a 
composite score consisting of a normalized interface energy term and the 
fit to the data:  

Fig. 1. Schematic representation of the integrative docking method. The 
number of possible configurations for two docked proteins is on the order 
of ~1011 (3 rotational degrees of freedom sampled in 5 degrees interval 
and 3 translational degrees of freedom sampled at 1Å interval). As the 
method proceeds, the number of considered configurations decreases. 

2.2 Benchmark Using Simulated Experimental Data 

Pairwise protein docking benchmark 4.0 (Hwang, et al., 2010) is used to 
validate integrative docking method. This benchmark contains 176 com-
plexes and their corresponding unbound structures, classified into 121 low-
difficulty or rigid-body cases, 30 medium-difficulty cases, and 25 high-
difficulty cases, based on the degree of conformational change at the inter-
face upon complex formation. For testing EM2D and EM3D, only a subset 
of 27 complexes with more than 675 residues is used (EM benchmark). 
These complexes are divided into 16 rigid-body, 4 medium-difficulty, and 
7 difficult cases. Each of the benchmark complexes also had SAXS, 
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EM2D, EM3D, NMR-RTC, and CXMS data simulated based on its native 
complex structure (Supplementary Data). We have also tested the method 
on three experimental SAXS dataset from pyDockSAXS benchmark 
(Niemann, et al., 2008; Pinotsis, et al., 2008; Pons, et al., 2010; Schubert, et 
al., 2002). Integrative docking is performed on each of these cases starting 
from the unbound structures and the predicted complex models are com-
pared to the native complex and assessed for accuracy. Each model is as-
sessed for accuracy by two measurements: orientation and interface accu-
racy, similar to CAPRI (Lensink, et al., 2007; Lensink and Wodak, 2010). 
Orientation accuracy (high, medium, acceptable or incorrect) is based on 
RMSD criteria (Supplementary Data), while interface accuracy is based on 
the fraction of correctly predicted interface residues (Supplementary Data). 
In line with previous docking papers, we define a near-native model as a 
model of high, medium, or acceptable accuracy. The success rate is the 
percentage of benchmark cases with at least one near-native model in the 
top N predictions (N is typically 10, referred to as top10).  

3 RESULTS 

3.1 Docking Benchmark Results 

3.1.1 Docking Accuracy Increases Significantly for Individual 

Datasets. Integrative docking method shows 2-fold increase in the 
top10 success rate compared to standard docking (PatchDock-
FireDock protocol) for SAXS and NMR-RTC, almost 3-fold in-
crease for CXMS, and 4-fold increase for EM2D and EM3D (Ta-
ble 1, Fig. 2a). The standard docking protocol succeeds to rank a 
near-native model in the top10 scoring models in 24% of bench-
mark cases. When SAXS data is used, this number goes up to 51%. 
If we consider only ~65 rigid body cases with less than 3% missing 
residues (unbound structures compared to complex), the success 
rate increases to 77% (Schneidman-Duhovny, et al., 2011). For 
EM2D and EM3D, the success rate is 82% and 79%, respectively. 
This success rate quadruples when compared to standard docking 
with the 19% success rate for the 27 complexes in the EM bench-
mark. For NMR-RTC, the success rate is 47%. With up to three 
cross-links, the success rate is 65%. If we consider the top scoring 
model, there is a 2-fold increase in the success rate for SAXS and 
NMR-RTC (22% and 18% vs. 10%), almost 4-fold increase for 
CXMS (36% vs. 10%), and almost 5-fold increase for EM2D and 
EM3D (33% vs. 7%).   

Table 1. Success rate of integrative docking using individual experimental 
filters. 

TopN Standard  
docking 

Standard  
docking 
EM 
cases 

SAXS EM2D EM3D NMR- 
RTC 

CXMS 

1 10% 7% 22% 33% 33% 18% 36% 
10 24% 19% 51% 82% 79% 47% 65% 

100 49% 26% 77% 89% 89% 76% 87% 
Case # 176 27 176 27 27 176 138 

 
While using any type of data significantly improves the results 
relative to standard docking, we are still far from the upper limit on 
the success rate, given the initial sampling by finer docking (97% 
of the benchmark cases have a near-native model sampled by a 
global search). When we allow for a near-native model in the 

top100 instead of top10 models, the success rate increases to 71-
89%, depending on the data types. For the failing benchmark cas-
es, the near-native model is usually among the top1000 models.  

Fig. 2. Success rate of integrative docking for Benchmark 4.0. A) Success 
rate in prediction of orientation (top, top10) and binding site (top-I, top10-
I) for standard docking and docking restrained by NMR-RTC, CXMS, 
SAXS, EM2D, and EM3D. B) Success rate for predicting a near-native 
model within the top10 models as a function of complex size for standard 
docking as well as docking restrained by NMR-RTC, CXMS, SAXS, 
EM2D, and EM3D. C) Success rate for predicting a near-native model 
within the top10 models as a function of complex shape for standard dock-
ing as well as docking restrained by NMR-RTC, CXMS, and SAXS. 

The success rate depends on the difficulty of the benchmark cases, 
but there is a significant increase when compared to standard dock-
ing, independent of the difficulty (Table S2, S3). The success rate 
also increases when only high or medium accuracy models are 
considered as near-natives (Table S4). 

3.1.2 Interface Prediction Accuracy. We find that the top-scoring 
model has a correctly predicted interface (Fig. 2a, Supplementary 
Data) in 50-68% of cases compared to 32% for standard docking. 
While NMR-RTC performs worse than other data types in orienta-
tion prediction, the success rate in interface prediction is compara-
ble to that for other data types. Based on these benchmark results, 
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the probability of a correctly predicted interface in the top-scoring 
model is 50-70% (depending on data type used) vs. 32% for stan-
dard docking and it increases to 84-91% if top10 models are con-
sidered.  
3.1.3 Dependence of Success Rate on Complex Size. For each of 
the five data types, we test the dependence of the success rate on 
the complex size. The 176 benchmark complexes were divided into 
four groups according to complex size, with the fourth group cor-
responding to the 27 complexes in the EM benchmark (Fig. 2b). 
Varying data types are most informative and applicable for differ-
ent complex sizes. In particular, the success rate of standard dock-
ing decreases with the increase in complex size from 34% for 
small complexes to 19% for the EM benchmark. The reason is that 
the number of configurations and flexibility increase with protein 
size. The success rate for NMR-RTC drops sharply for complexes 
with more than 300 residues (for complexes with more than 675 
residues, there is no significant difference between standard dock-
ing and docking with NMR-RTC). The reason is that the number 
of potential interfaces (ie, the size of the search space) increases 
with protein size. In contrast, the success rate of SAXS is not sen-
sitive to complex size. Unsurprisingly, the success rate for CXMS 
decreases slightly for the larger and more challenging complexes.  
3.1.4 Dependence of Success Rate on Protein Shapes. Protein 
complexes were classified into oblate, spherical, and prolate based 
on the eigenvalues of the gyration tensor (Pons, et al., 2010) (Fig. 
2c). The success rate of standard docking is highest for oblate pro-
teins and lowest for prolate proteins. The reason is that oblate pro-
teins have larger interfaces and better shape complementarity. The 
success rate of NMR-RTC, CXMS, and SAXS is not sensitive to 
protein shapes due to a combination of data and energy scores. The 
most significant increase in the success rate compared to standard 
docking is for prolate proteins: 3-fold increase for NMR-RTC, 5-
fold increase for CXMS, and 4-fold increase for SAXS. No analy-
sis was performed for EM, due to a small size of the EM bench-
mark. 
3.1.5 Combining Different Experimental Datasets Increases the 

Success Rate. We tested pairwise combinations of the five experi-
mental data types. The top10 success rate increases from 42-82% 
for individual data types to 63-82% for pairwise combinations 
(Table 2). More important is the increase in the top1 success rate 
from 17-36% to 26-52%. CXMS data complements all other data 
types, with most significant improvement for the top-scoring mod-
el, where the success rate increases from 36% for CXMS alone to 
47-52% for all four pairwise data type combinations. The top10 
success rate for CXMS combined with SAXS or NMR-RTC is 
80% and 81% respectively, and is comparable to the success rate 
of EM data types. Another successful pairwise combination is 
SAXS - NMR-RTC, improving the success rate for the whole 
benchmark from 47-51% for SAXS and NMR-RTC separately to 
68% when both data types are used. No significant improvement in 
the top10 success rate is obtained by combining EM (2D or 3D) 
with other data types, since their independent success rate is al-
ready high (79-82%). For the EM - NMR-RTC combinations, there 
is even a slight decrease in the success rate, because the NMR-
RTC data is not informative for large protein complexes in the EM 
benchmark. When all five data types are combined, the top10 suc-

cess rate is similar to that for EM (83%), but more important is the 
increase in the top1 success rate to 61% from 33% for EM alone.  

Table 2. Success rate of integrative docking using combined experimental 
filters. 

TopN SAXS, 
EM2D 

SAXS, 
EM3D 

SAXS, 
NMR-
RTC 

SAXS, 
CXMS 

EM2D, 
EM3D 

 

1 26% 41% 27% 51% 44%  
10 74% 74% 68% 80% 82%  
100 82% 82% 85% 91% 89%  
Case # 27 27 176 138 27  

TopN EM2D, 
NMR-
RTC 

EM2D, 
CXMS 

EM3D, 
NMR-
RTC 

EM3D, 
CXMS 

NMR-
RTC, 
CXMS 

All 

1 26% 52% 30% 48% 47% 61% 

10 63% 83% 67% 74% 81% 83% 
100 85% 87% 85% 91% 94% 83% 
Case # 27 23 27 23 138 23 

Increase in the success rate by more than 10% as compared to individual datasets is 
marked in bold.  

3.2 Application to an Antibody-Antigen Complex  

To test the applicability of the integrative method for determining 
pairwise protein complexes in a biopharmaceutical setting, we 
applied it to an antibody-antigen complex with experimentally 
generated datasets. In a typical biopharmaceutical discovery pro-
ject, antibodies for a specific target can be generated by mice im-
munization or by phage-display libraries. The next step, is select-
ing an optimal antibody out of several candidates for further devel-
opment into a drug. Knowledge of the epitope is an important fac-
tor in antibody selection process. Therefore, a method that can 
model antibody-antigen complexes rapidly and accurately would 
be extremely useful.  
In our case, the antigen, PCSK9, plays a major regulatory role in 
cholesterol homeostasis and it is an important drug target (Horton, 
et al., 2007). PCSK9 binds to the EGF-A domain of the low-
density lipoprotein receptor (LDLR) and induces LDLR degrada-
tion. Reduced LDLR levels result in decreased metabolism of low-
density lipoproteins, which may lead to hypercholesterolemia. The 
antibody, J16, inhibits the action of PCSK9 by preventing LDLR 
binding (Liang, et al., 2011). Recently, a crystal structure of 
PCSK9 in complex with J16 Fab showed that J16 is a competitive 
inhibitor of LDLR binding (Liang, et al., 2011).  
3.2.1 Complex Structure Modeling. The atomic structure of the 
unbound PCSK9 has been available since the beginning of this 
study (Protein Data Bank code 2P4E) (Cunningham, et al., 2007). 
For the J16 Fab, 20 comparative models corresponding to two 
different elbow angles (136° and 168°) and 10 different CDR loop 
conformations were selected based on the fit to the J16 Fab SAXS 
profile (Supplementary Data). In addition, the missing loops, N-
termini, C-termini, and His tags were added for PCSK9 and the 
J16 Fab with MODELLER-9v8, to better model the SAXS data. 
The integrative docking protocol was applied to PCSK9 and 20 J16 
Fab models; the final clustering considered all complex models 
simultaneously. 
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The structure of the complex was determined by X-ray crystallog-
raphy during the course of this project, but was made available to 
this study only after the model of the complex was computed. 
Therefore, this application corresponds to a real life antibody dis-
covery scenario, where the unbound structures of the drug target 
and the antibody are known, but the structure of the complex is not 
available. 
3.2.2 Assessment Against X-ray Structure. Since the accuracy of a 
docking prediction highly depends on the accuracy of the input 
structures, we first assess the accuracy of our input structures. The 
Cα-RMSD between the bound and unbound PCSK9 structures is 
1.4Å and between the bound and modeled J16 Fabs is 1.0Å and 
3.0Å for elbow angles of 136° and 168°, respectively. Thus, there 
are no major PCSK9 conformational changes upon binding. The 
elbow angle of the J16 Fab in the complex X-ray structure is 
137.6°. Therefore, the prediction of the elbow angle based on the 
Fab SAXS profile was correct (Fig. S1). We have also tested the fit 
of the X-ray structure of the complex against each data type (Fig. 
S2) and observed high quality fits for SAXS (χ of 2.24), EM2D 
(cross-correlation coefficient of 0.87), and EM3D (cross-
correlation coefficient of 0.78). 
Next, we analyze the accuracy of the best-scored models in terms 
of orientation and interface accuracy for different datasets. The 
best-scored models with acceptable accuracy were ranked 14, 2, 2, 
and 2 for SAXS, EM2D, EM3D, and all three datasets combined, 
respectively (Table S5). The best-scored models with a correct 
epitope were ranked 3, 2, 1, and 1, respectively (Table S5). Dock-
ing results are slightly better for models with the elbow angle of 
136° than for 168°, with acceptable accuracy models ranked 5, 2, 
1, and 2 for SAXS, EM2D, EM3D, and all three data types com-
bined, respectively (Table S5). 
3.2.3 Data-guided Filtering and Funnel Analysis. Ideally, the nor-
malized fitting scores would correlate strongly with the accuracy 
of the model over a broad range of accuracy (ie, I-RMSD of 0-5Å 
or L-RMSD of 0-15Å). We now examine whether or not such a 
“funnel” exists for each type of data (London and Schueler-
Furman, 2008) and how these funnels relate to specific complex 
structures (Fig. 3a). The three experimental datasets indeed result 
in pronounced funnels, revealing similar complex structures (Fig. 
3b). Typically, there are three or four funnels associated with com-
plex structures related by the pseudo-symmetry of the antibody (ie, 
light chain vs heavy chain) and the triangular shape symmetry of 
PCSK9 (Fig. 3c).   
The SAXS dataset produces four funnels. One of them includes the 
near-native models, although this funnel is the least pronounced 
among the four funnels. The EM2D dataset produces three funnels 
with comparable scores. One of the funnels is centered close to the 
native structure, demonstrating the predictive power of EM2D. The 
EM3D dataset produces four funnels similar to those from the 
SAXS dataset. In contrast to SAXS, the funnel with near-native 
models has the best EM3D scores, although this funnel is not cen-
tered on the native complex structure (its center is ~11Å RMSD 
away from the native structure). While the EM3D dataset is best in 
selecting the correct funnel, the EM2D score is better in picking 
the highest accuracy model once the correct funnel has been se-
lected. The shift in the near-native EM3D funnel relative to the 
near-native EM2D funnel can be explained by a distortion of the 
3D density map that results from inaccuracies in the initial density 

map used for the 3D reconstruction that was obtained from the 2D 
class averages by the random conical tilt method.  

Fig. 3. Modeling of the PCSK9 – J16 Fab complex. A) Scoring funnels as 
a function of L-RMSD for different experimental filters. B) Top scoring 
cluster representatives (red, green, gold and yellow) for integrative docking 
with SAXS, EM2D, and EM3D filters, superimposed on X-ray crystallo-
graphic structure (blue). The models are superimposed on PCSK9 (prodo-
main in cyan, catalytic domain in blue, and C-terminal domain in dark 
blue). C) Fit of the top scoring cluster representatives to the SAXS profile, 
EM2D class averages, and EM3D density map. 

4 DISCUSSION 

We developed an integrative method for docking two protein struc-
tures by combining protein docking techniques with data from five 
experimental methods including SAXS, EM2D, EM3D, NMR-
RTC, and CXMS. To assess the accuracy of the integrative meth-
od, we used a benchmark of 176 complex structures with simulated 
experimental data. We also applied the method to an antibody-
antigen complex, relying on experimental datasets collected spe-
cifically for this study. 
Additional information, such as sequence conservation and impact 
of site-directed mutagenesis on complex formation, has been used 
previously to increase the accuracy of pairwise protein docking 
(Lensink and Wodak, 2010; Mashiach, et al., 2010). Here, we ana-
lyze the improved docking success rates afforded by data from five 
accessible experimental methods. Our integrative framework can 
be modularly extended to support additional types of experimental 
data, such as those from footprinting, site-directed mutagenesis, 
FRET spectroscopy, and atomic force microscopy (Trinh, et al., 
2012). In addition to the data types tested here, binding site resi-
dues and distance constraints, if available, can be added directly to 
the PatchDock input. In principle, experimental datasets can be 
used either to filter docking models or directly to drive the sam-
pling. We select the first approach, because it allows seamless 
integration of any combination of datasets and we can rely on effi-
cient global search methods already developed for pairwise protein 
docking. Moreover, driving the docking with global shape data, 
such as SAXS and EM2D, is algorithmically challenging. 
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4.1 Experimental Datasets and Their Impact on 

Docking 

The experimental methods were chosen for their utility in a bio-
therapeutics discovery context where multiple artificial binding 
proteins (such as antibodies) are engineered to bind a specific drug 
target and rapid tools for epitope prediction are required. Accord-
ing to our large benchmark analysis, EM (2D and 3D) are the most 
informative of all datasets (Table 1). However, collecting experi-
mental information to generate a 3D map is generally possible only 
for complexes larger than approximately 100 kDa and requires a 
relatively large amount of work. Here, we show that 2D class aver-
ages, which can be obtained significantly faster and for a wider 
range of samples, can provide the same information for pairwise 
docking as 3D density maps. In contrast to EM, SAXS has the 
advantage of being able to collect and analyze multiple samples in 
a few hours. As a result, purification, SAXS data collection, and 
docking of multiple antibodies binding the same target could be 
performed in a matter of days. Automation of collecting EM data is 
more challenging than that for SAXS, although recent advances in 
data acquisition and an increase in computing power have allowed 
more streamlined processes in single particle EM (Lyumkis, et al.; 
Wu, et al., 2012). While cross-linking with mass spectrometry is 
informative on its own, it also complements all other data types. 
With recent advances in data collection (Rappsilber, 2011), it is 
becoming a method of choice for combination with shape informa-
tive methods, such as SAXS and EM.  
While validation of integrative docking by a large benchmark us-
ing simulated data has allowed a robust statistical analysis (Fig. 2), 
data collection and application to a specific target with real data 
has highlighted advantages and challenges of the integrative dock-
ing approach. Unlike NMR-RTC, which depends on protein ex-
pression in a cell-free expression system, both SAXS and EM gave 
useful data for the PCSK9-J16 Fab complex. In general, larger size 
and higher symmetry of a complex simplify EM data acquisition 
and interpretation. The larger mass of an IgG (150 kDa) compared 
to a Fab fragment (50 kDa) would simplify the data acquisition and 
image processing. However, the flexibility of an IgG may result in 
a conformationally heterogenous complex sample, favoring the use 
of the more rigid Fab fragment. While the EM3D data was most 
informative for identifying the near-native cluster of models and 
predicting the epitope, more accurate structural models could be 
selected by the EM2D score. Despite the relatively low informa-
tion content of the SAXS profile, the SAXS score predicted the 
same clusters as the EM-based scores. Additionally, the J16 Fab 
SAXS profile was useful in predicting the Fab structure and its 
elbow angle. 

4.2 Improvement Compared to Standard Docking 

While integrative protocol succeeds in including a near-native 
model among the top10 models in 42-82% of the cases (Table 1), 
state-of-the-art docking methods succeed only in 30-40% of the 
cases, depending on the benchmark and accuracy criterion. 
ZDOCK-ZRANK ranks a model with I-RMSD < 4.0Å among the 
top10 models in 35-40% of the rigid-body cases of Benchmark 2.0 
(Pierce and Weng, 2008). Recently developed residue potential, 
SIPPER (Pons, et al., 2011), succeeds to rank a model with L-
RMSD < 10Å in 28% of the 81 Benchmark 3.0 complexes, where 
at least one model with L-RMSD < 10Å was generated by 

FTDock. In a recent CAPRI evaluation, an acceptable accuracy 
model was submitted by at least one participating group for 11 out 
of 13 complexes (Lensink and Wodak, 2010). However, top 8 
predictors could only predict correctly 6 out of 13 complex struc-
tures. While predictors can use additional information manually, a 
fully automated method, ClusPro (Comeau, et al., 2004), suc-
ceeded to predict correctly 5 targets.  

4.3 Comparison to Other Hybrid Docking Methods 

Docking has been previously combined with additional data. 
HADDOCK (Dominguez, et al., 2003) benefits from a consensus 
interface predictor CPORT (de Vries and Bonvin, 2011), succeed-
ing to rank an acceptable accuracy model among the top10 models 
for ~19% of the Benchmark 2.0 complexes. pyDockSAXS (Pons, 
et al., 2010), which combines FTDock sampling with the pyDock 
scoring function and a SAXS profile, succeeds to rank a model 
with L-RMSD < 10Å in 43% of the Benchmark 2.0 complexes (ie, 
for 70 of the 84 complexes with similar molecular mass for bound 
and unbound structures). In comparison, our approach applied to 
the same benchmark with a SAXS profile only, results in the sig-
nificantly increased 63% success rate. The increase in the success 
rate is due to the increased precision of configurational sampling 
and higher accuracy of interface energy score in FireDock (Tables 
S6, S7). The integrative approach had a similar performance for 
three experimental SAXS dataset from pyDockSAXS benchmark 
(Niemann, et al., 2008; Pinotsis, et al., 2008; Pons, et al., 2010; 
Schubert, et al., 2002) (Table S7).  

4.4 Sampling versus Scoring 

The current work highlights the challenges in protein docking. 
Sufficient sampling is required in the global search stage to maxi-
mize model accuracy, hit rate, and the quality-of-fit to the experi-
mental data (Table S1, S6). Our integrative approach is designed to 
benefit from the increasingly focused molecular docking search 
space afforded by consideration of experimental data. While an 
acceptable accuracy model is contained among the ~200,000 mod-
els generated by a global search for 97% of benchmark complexes, 
our integrative protocol succeeds to rank such models among the 
top10 scoring models only in 42% to 82% of the test cases, de-
pending on the data used (Tables 1, 2); correct binding sites are 
identified among the top10 scoring models in 84% to 91% of the 
cases (Fig. 2a). We suggest that a combination of finer sampling 
methods (including flexible docking) and improved scoring func-
tions with physico-chemical and/or statistical terms can be helpful 
for further improving the success rate of pairwise protein docking. 
Integrative docking, such as that described here, may provide the 
best compromise between the relative expediency and inaccuracy 
of standard docking on one hand and relative complexity and accu-
racy of experimental structure determination by X-ray crystallog-
raphy or NMR spectroscopy on the other hand. 
 

Software. The package is downloadable from 
http://salilab.org/idock. SAXS, EM2D, EM3D, NMR-RTC, and 
CXMS scoring functions are implemented in our open source Inte-
grative Modeling Platform (IMP; http://salilab.org/imp). Patch-
Dock and FireDock are available at http://bioinfo3d.cs.tau.ac.il. 
Docking with a SAXS profile can also be done via a webserver at 
http://salilab.org/foxsdock. 
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